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Abstract-Critical Rayleigh number is found for a fluid bounded by vertical parallel walls offinite height. The 
thermally expansive, radiatively diathermanous fluid is heated from below and cooled from above at rigid 
ends. The ends have arbitrary but equal emissivity. The vertical walls are thin and conducting, have arbitrary 
uniform emissivity, and are adiabatic on their exterior surfaces. Effects of aspect ratio, side wall conductance, 
and side and end tiall emissivities on critical Rayleigh number are found analytically with the Galerkin 

technique and confirmed experimentally with holographic interferometry. 

NOMENCLATURE 

a, wavenumber; 

A, area; 
A, B, C, D, E, F, coefficients; 

b, 
C, 

D, 
A * . 

exr e,, en 
f , 
9, 

G, 
H, 
i. j, k, 1, 
I, 
k, 
K, 
L, 
N, 
M. 

z, 
Nut 
PT 
p, 
Pr, 

4, 
Ra, 
s. 
S, 
t, 
T, 
u, v, 
V, 
W, 
x, y, Z! z; 

KDJL; 
even beam function ; 
distance between sidewalls; 
unit vectors ; 
velocity trial function ; 
acceleration of gravity ; 
irradiation ; 
dimensionless conduction number ; 
integers ; 
integral ; 
thermal conductivity ; 
shape factor kernel ; 
distance between hot and cold plates ; 
summation limit ; 
matrix element ; 
complex number ; 
radiation-conduction number, 
(4aT;D)Jk ; 
Nusselt number at x = 0 and y-averaged; 
perturbation in pressure; 

pressure ; 
Prandtl number, v/u; 
heat flux or transcendental root; 

Rayleigh number, g/lATD4/vaL; 
odd beam function; 
irradiation integral ; 
thickness or time; 
temperature ; 
velocity ; 
volume ; 
distance between sidewalls, W >> D; 
spatial coordinates. 

Greek symbols 

;;: 
“, 

iT, 

Subscripts 

c, 
C, 
Q 
H, 
i, j, k, 1, 

m, 

L, 

0, 

r, 
w, 
X, 

Yv 

thermal diffusivity ; 
volume expansion coefficient ; 
perturbation in irradiation ; 
temperature difference between horizon- 

tal plates; 
emissivity ; 
dimensionless temperature ; 
transcendental root ; 
dynamicviscosity or transcendental root; 
kinematic viscosity ; 
trial function ; 
density ; 
Stefan-Boltzmann constant; 

trial function ; 
perturbation in 0; 
trial function. 

critical value ; 
cold plate ; 
based on length D ; 
hot plate; 
summation integers ; 
mean value or evaluated at mean 
temperature; 
based on length L; 
base flow state ; 
radiation ; 
wall ; 
atx = f0.5; 
at Y = f0.5 W/D. 

Superscripts 
* complex conjugate or effect of radiation 

on base flow neglected ; 
derivative or dummy variable. 
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I. INTRODUCTION 

THY PKEIWTION of the onset of motion in a right 
rectangular cylinder of height Land oflarge horizontal 
aspect ratio W/D is considered. For example, the 

thermal designer may wish to size a rectangular 
honeycomb to suppress convection in a Francis type 

solar collector [ 1, 21. 
Wooding [3] treated 3-dim. convective disturbances 

in a fluid bounded by two parallel rigid vertical walls 
and by shear-free top, bottom and ends when the fluid 

was subject to a destabilizing vertical temperature 

gradient. He found that the critical Rayleigh number 

based on wall spacing D depends on horizontal and 
vertical wavenumbers when the walls are adiabatic and 
is rt’ when the walls are perfectly conducting. Edwards 
[4] showed that if the walls are arbitrarily conducting 
in a finwise manner, the critical Rayleigh number is a 

function of two wavenumbers and the dimensionless 

quantity H = k,t,!(kD) where k, is the wall con- 
ductivity, r, is the wall thickness, and X is the fluid 

conductivity. The analysis was extended [5] to include 
the slot whose walls conduct arbitrarily and exchange 
radiant energy through a diathermanous fluid. The 
wall radiative exchange, like wall conduction, stabil- 
izes the fluid from convective disturbances by adding 

thermal damping. 
To account for the rigid top and bottom, Edwards 

and Sun [5] suggested using the infinite slot solution 
and adjusting the vertical wavenumber. Davis [6] and 
Catton [7 91 derived the critical Rayleigh number for 
a radiation-opaque fluid without recourse to an adjus- 
ted wavenumber approximation by applying the Gal- 

erkin technique. 
Experimental data on the onset of motion and heat 

transfer after instability have been reported for 

radiation-opaque silicone-oil-filled slots [lo, 1 I] and 
radiation-transparent air-filled slots [12, 131. The 

results of Smart, Hollands, and Raithby [ 131 indicate 

that the emissivity of the top and bottom enclosure 
surfaces, which is not accounted for in existing theory 

[5]. has a significant effect on the critical Rayleigh 

number. 
The objective of the investigation reported in this 

paper was to apply the Galerkin technique to de- 
termine the critical Rayleigh number for the finite slot 
filled with a diathermanous fluid and having arbit- 

rarily finwise-conducting vertical walls and arbitrary 
vertical and horizontal wall emissivity. The present 
analysis incorporates the effect of the radiation on the 
temperature and velocity fields in the fluid before 
instability. Experimental data for air-filled slots ob- 
tained by holographic interferometry are also 
reported. 

2. FORMULATION OF PROBLEM 

Initially a thermally-expansive and radiation- 
transparent fluid fills a finite slot (finite L/D and 
infinite W/D) as shown in Fig. 1. The upper horizontal 
boundary is isothermal at T,, the lower horizontal 
boundary is isothermal at higher temperature T,, and 

; I9 
t 

FL 1. Cell geometry and coordinate system 

the vertical walls (sidewalls) conduct isotropically and 

partially reflect thermal radiation diffusely. Due to 
radiative exchange between the sidewalls of the slot, 

the vertical temperature variation is not linear, as 
would be the case when radiation heat transfer is 
absent or the sidewalls are infinitely conducting. Thus a 
weak 2dim. base-flow convection occurs. For a Bous- 
sinesq fluid, the base flow temperature and velocity 

fields in the fluid are governed by the dimensionless 
equations 

v V” = 0. (1) 

V’v, - VP, + Ru,~(L/D)U,C?; - Pr 'v<, .Vv,, = 0, 

(2) 

V’U, - v0 Vt), + (D!L)v, Pz = 0 (3) 

where vO, Q,, and P, are the velocity, temperature 
deviation from linearity, and pressure measured in 
units of cc/D, AT, and (ctp)/D', respectively. The 

coordinates are measured in units of lateral distance 
D ; Pr is the Prandtl number; and the Rayleigh number 
based on D is 

Ra,> = (gpATD4)/vrL 

The boundary conditions on velocity are 

1 
v,=Oon x= +-and z= I:!. 

2 

The temperature is subject to 

0, = 0 on : = * -! 4 
20 

and, assuming that the sidewalls are insulated on the 
exterior and thin enough to justify the fin 
approximation, 

H on s = + : (4) 

where H = (k,t,)/(kD) and q,, is the net radiation flux 
out of the wall, measured in units of 4aT:AT. When 
AT << T, as required by the Boussinesq approxi- 
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mation, the radiation flux can be expressed in lin- 
earized form 

410 
A @‘,>(Qo - Go) (5) 

where t:X is the emissivity of the sidewalls (x = *OS), 
N,) = (4cTiD)/k is a radiation<onduction para- 
meter, and Go is the dimensionless irradiation flux 
indicated by the integro-equation 

Go = 
I 

[c’& + (1 - i:‘)G; + (D/L)(z - z’)]KdA’ 
4 

(6) 

where K is the shape factor kernel between differential 
wall areas d.4 and dA’. The horizontal walls are 

assumed to have equal (diffuse) emissivity E, and 
specular reflectivity 1 - C= in order to simplify the 
evaluation of Go. 

Small, 3-dim. Bernard-type convective disturbances 

from the base flow state are assumed, and second- 

order terms are neglected. At marginal stability (see 
Appendix) the perturbations in velocity, temperature, 
and pressure, u, 4, and p, respectively, are governed by 

v.u =o. (7) 

V’u - Vp + Ra,JL/D)@= - Pr-‘V ‘uvo = 0, (8) 

vS#l + (D/L)u . iz - v. . vqil - u vo, = 0. (9) 

The boundary conditions are 

1 
u = 0 on x = + 2 and 

1L 
$J=O on z= f-- 

20 

and 

where 

4r = L.N.(~J - 7) (11) 

and 

7 = G - Go = [c’,’ + (1 - ?)y’]KdA’. (12) 

FIG. 2. Schematic of base flow velocity field. 

Equations (7)-(9), subject to the boundary con- 

ditions, and the base flow solution v. and B. constitute 

an eigenvalue problem for the Rayleigh number. The 

lowest positive Ra, which satisfies the equations is the 
critical Rayleigh number, Ra,,,. 

3. METHOD OF SOLUTION 

The base flow and thermal stability eigenvalue 
problems formulated in the previous section are solved 
by the Galerkin technique (e.g. [14]). 

Base jaw 

The base flow velocity, temperature, and pressure 
are approximated by 

v0 & ; AOifOi(X, z), 
i=l 

80 g i [BoiToi(Xv Z) t Coi$oi(Xv z)], 
i=* 

P, A ; FOi7rOi(X. z) 
i=l 

where Aoi, Boi, Coi, and F,, are unknown coefficients 

and foi, T,,~, $oi, and noi are trial functions which have 
sufficient freedom to resemble the variable being 
approximated. 

For the velocity field there were chosen trial func- 
tions foi which satisfy continuity and the no-slip 
boundary conditions, that is 

fOi = - ;si(x)s; D z t? + s!(x)s. Dz C?Z 
CL)” ’ ‘Ll 

where 

sinhb,x) si&x) 
Si(X) = p - ___ 

smh(pJ2) sin&/2) 

are the odd series of beam functions. The roots pi are 
selected to make the derivatives, s;(x), equal zero at x = 

f 0.5 and are tabulated in ref. [ 151. A schematic of the 
base flow velocity field being approximated is shown in 

Fig. 2. 

The mixed Galerkin method [14] is employed in the 
temperature field approximation, since neither the 

energy equation (3) nor the sidewall boundary con- 
ditions (4)-(6) can be satisfied by the chosen trial 
functions. Hence, one set of functions, 70ir selected so 
that each satisfies the 2-dim. Laplace equation, are 
employed in the solution to the boundary conditions, 
and another set of functions, tioi, each of which satisfies 

the homogeneous sidewall boundary conditions 
approximately are used in the solution to the momen- 
tum and energy equations, equations (2) and (3). 
Suitable functions are 

7oi = cosh[2rri(D/L)x] sin[2ni(D/L)z](L/D), 

tioi = COS[Z~~~X] sin[2ni(D/L)z](L/D) 

where fractional coefficients qoi are determined so that 
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each function $,i satisfies the homogeneous sidewall 
boundary conditions in a Galerkin manner. Specifi- 
cation of nCji is not necessary. 

The unknown coefficients in the variable expansions 
are determined by substituting the expansions into the 

appropriate differential equations or boundary con- 
ditions and forcing the resultant errors to be ortho- 
gonal to the trial functions over the domain of the 
independent variables [ 141. The resulting Galerkin 

orthogonality relations for equations (4). (2) and (3) 
are, respectively, 

i B,,([4di2(D/L)2H + 2lri(D/L) tanh (rriD/L) 
i = I 

+ Pr-m’ C 1 AOkAOIM014jkl~ 
k=, ,=, 

j, 46[(~k, - (1 - dS?lk] = s,,. (17, 

i. I = I. __., N 

and 

X 
i 

sin [27rI(D/L)z] sin [2nk(D/L)z’] KdA’dz (18) 
J .A 

J^ 
0 .s 1. I) 

S,, = 2(D/!L) 
0 5 1. I) 

(13) X 
i 

sin [27cl(D/L)z] (z - z’) KdA’dz. (19) 
” ‘1 

The last four expressions arise from the Galerkin 
solution to the integro-equation (6). The matrix vol- 

ume integrals (- 0.5 < x < 0.5 and - OSL/D < z d 
OSL/D) are evaluated analytically, and integrals con- 
taining the pressure vanish due to the solenoidal 

(14) nature of the velocity trial functions. 
The values of qoi in the Ij/Oi trial functions are the 

.v 5 

C ‘A [Mo,tij - 1 BOkM022ijkI + Coi”‘fo23ijJ 
roots to the transcendental equation 

i=, i Oi k-l 

= 2 i ~01~OkM024,kI~ (15) 
4n 2.2 I (D/L) 2 H + t:J,(l - Eoii) 

k=, ,=I - nq,, tan (q,,rr/2) = 0 (20) 

,j= I....,N 
0 6 YOl G I, 2 d qo2 < 3, etc. 

where the matrix elements in equations (14) and (15) 
are volume integrals as follows: Perturbation equations 

J’ 

The solution to equations (8) and (9) are approxi- 

M Ollrj = foj V2 foi dk’, mated by 
Y Y 

M 012ij = fOj ~zti~~~ dv, 

M OL3jk = 
i’ 

foj . &zok dV, 
Y 

M 014jkl = 
J 

fOj ’ (V ’ fOk fo,) dJ’, 
Y 

M OZlij = f0, G:tioj dv, 
” 

M 022ijk = ‘JJOj fOi ’ VzOk df’, 
P 

M 023ij = I +ojV21c/oi d V, 
Y 

M 024jkl = 
1 

$Oi fOk . V+Oj dv, 
Y 

and where Eoij and Doj in equation (13) are the 
solutions to the linear equations 

i EOik[6k, - (1 - %)s2lk] = ‘;xS2riy (16) 
k=L 

p A 1 F,rri(X, .v, z) 
i=l 

where fi satisfy continuity and the no-slip conditions 

and ri satisfy the boundary conditions approximately. 
As shown by refs. [6-91 the most unstable mode of 

convection is rolls whose x-component of velocity is 

essentially zero. The velocity variation in y is periodic 
with wavenumber a. Suitable velocity trial functions 
are 

f, = - $cos[(2i - 1)71x] sin (ay)cj[(D/L)z] 6, 

+ cos[(2i - 1)71x] cos (ay) ci [(D/L)z]& 

where 

C&) = 
cosh(l,x) cos(/$x) 

-~ 
cosh(l,/2) cos(lJ2) 

are the even series of beam functions and ii are selected 
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so that the derivatives, c:(x), are zero at x = +0.5. 
The temperature trial functions, which should have 

the same vertical symmetry as the vertical velocity 
component, are 

Ti = cos(nqix)cos(ay) cos[(2i - 1)7@/L)z](L/D). 

The coefficients qi, analogous to qoi, are evaluated so 
that equations (lo)-( 12) are satisfied approximately, 
that is 

[u” + x2(2i - 1)‘(D/L]2]ff + Q?~(l - E,J 

-aq, tan(q,n/2) = 0 (21) 

0 < q, < 1, 2 < q2 < 3, etc. 

where Eii are obtained from 

and 

Sm={sr:, j:::ID jA 
cos(ay) cos(ay’) cos[(2i - 1) 

x n,(D/L)z] cos[(21- l)rr(D/L)z’]KdA’dydz 

a:2 

is i 

0.5l.,D 

> 

X cos2(ay) cos2[(2i - 1) 
pa:2 - 0.5 L:D 

x n(D/l)z]dydz 
i 

. (23) 

The latter two equations arise from the Galerkin 
solution to the integro-equation (12). 

The Galerkin orthogonality relations associated 
with the momentum and energy equations, equations 
(8) and (9) are 

i$I (AiMllij +  Ra@iM12ij) = Ov (24) 

~ (AiM,,ij + BiM22ij) = 0, (25) 
i=l 

The matrix element: ;i’r,” ’ ’ ” N’ 

MIBij = s fj.VzfidV - Pr-.’ ; 
Y k=l 

A Ok fj ’ (V * fifok)d ‘v, 

Ml 2ij = fj iZridV, 

M2fij = i fi . &,tjdV - i B,, zjfi . VZokdV 
JV k-=1 JV 

- ,$, 'Ok S, SC ’ V$‘okdV, 

Mzzij = 
s 

zjV’ridl/ - ~ A,, 
s 

ZjfOk . VqdV. 
V k=l V 

The volume integrations are over -0.5 < x g 0.5, 

-0.5a < y < 0.5~ and -O.SL,iD G z G OSL/D. 

Equations (24) and (25) have a non-trivial solution 
(nonzero Ai and Bi) only if the determinate of the 
2N x 2N matrix is zero, that is 

det 
Mt trj RadM,,ij 

Mzlij M22ij = 
0, (26) 

i, j = 1, . ., N. 

The lowest root Ru, which satisfies this condition is 
the critical Rayleigh number. It is noted that Ra, also 
appears implicitly in M 

1 . 
base flow solutton I e. A1 lip 

MzIij and Mzzij via the 
Ok* Baa, and co, cot%ClentS. 

The base flow temperature and velocity and critical 
Rayleigh number were determined from the above 
equations by standard matrix inversion and nonlinear- 
root-extraction techniques. In order to interpret the 
results values of RQ~,~ were also obtained for the 
special cases of (1) no base-flow convection (A,, and 
C,, set to zero) and (2) no base-flow convection or 
radiation (A,,, B,,, and Co, set to zero). Further details 
on the numerical procedures including the evaluation 
of the irradiation integrals S, ij, Srij, and Ssi are given in 
ref. [16]. 

4. DESCRIPTION OF EXPERIMENT 

Interferometer 
The holographic interferometer is essentially that 

described in ref. [17]. Coherent light (0.633 pm) from a 
15 mW Spectra-Physics helium-neon laser is split into 
an object beam and a reference beam by a variable- 
silvered mirror, and each beam is expanded to a 
100 mm diameter planar wave via a x 40 microscope 
objective and collimating lens. Pinholes of 5 pm dia- 
meter are located at the focal points of the microscope 
objectives in order to eliminate intensity variations in 
the wavefronts. The two wavefronts intersect at a 
Kodak 120-02 photographic plate (here at an angle of 
26”) and produce a hologram when the photographic 
emulsion is exposed simultaneously to the two beams 
and then developed in situ. The reconstructed object 
beam wavefront, which is recorded when the tempera- 
ture inside the test section is uniform, and the real-time 
object beam wavefront, which is distorted by a non 
uniform temperature field inside the test section, are 
focused by an achromat lens and interfere to produce 
an interferogram on Kodak Tri-X film. The in- 
terferometer components are mounted to a 1.2 by 
3.0 m vibration-isolated optical table. 

Test cell 
The test cell is constructed of two 10.2 x 30.6cm 

and 0.95cm thick aluminum plates which are sepa- 
rated by Bakelite spacers (Fig. 3) and are aligned 
horizontally on the optical table so that the object 
beam is parallel to the long axis of the cell. The lower 
plate is electrically heated, and the upper plate is 
cooled to just above the dew point. The plates were 
either polished (a, A 0.1) or painted black (gZ g 0.9). 

Sidewall partitions, which form 11 side-by-side cells 
between the aluminum plates, are supported in 
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FIG. 3. Test cell cross section, 1 cold aluminum plate, 2 hot 
aluminum plate, 3 sidewall partitions, 4 electrical heater, 5 

insulation, 6 spacers. 

0.79 mm wide and 1.27 mm deep milled slots, 6.73 mm 
apart, in each plate along the long axis of the test cell. 
The partitions were fabricated from either 0.51 mm 
thick first-surface aluminized paper (Ed = 0.03, k,,Y = 
0.47 k 0.02 W mm ’ K _ 1 ) or a 0.76 mm thick paper- 

phenolic laminate (c, L 0.9, k,, = 0.69 f 0.03 W m ’ 
K-l). In addition some runs were made with alum- 

inized paper which was painted black. 
The ends of the test cell (y = +0.5 W/D) were 

aluminized paper (untouched or painted black) 
backed on the exterior with 1.91 cm foam. The ends 

were lifted up approx. 2s prior to recording an 

interferogram. 
Table 1 contains a list of the cell characteristics 

investigated. Subscripts C and H denote the upper cold 

and lower hot plate, respectively, to allow for unequal 
plate emissivities. In each case the length of the test 
section W was 30.6cm. 

Independent measurements of the aluminum plate 
temperatures were made with chromel<onstantan 
thermocouples inserted in four drilled holes in each 

plate. 

Data reduction 
Real-time infinite fringe and finite fringe interfero- 

grams were recorded for the seven test-cells described 
above for the temperature difference range 10 < AT < 
40°C. The mean temperature of the air in the cell was 
kept near 290 f 2 K. Between seven and eleven data 

points (AT) were obtained for each cell. 

The extraction of the temperature field, averaged in 
J’, from the interferograms was done by standard 

techniques [Ih, 1X]. The experimental data were 
plotted as a Nussclt number (dimensionless vertical 
temperature gradient at Y = 0. averaged in J, and at z 

= +0.5L,‘D) vs the Raylcigh number based on lateral 
distance D. Fluid properties were evaluated at the 

mean temperature. 
Error analysis [ 161 indicated 5”, uncertainty in the 

experimental Nusselt and Rayleigh numbers. 

5. RESULTS AND DIS(‘USSION 

Base flow numerical resuh 
To illustrate the effect of wall radiation on the base 

flow temperature field, Fig. 4 shows how the dimen- 
sionless temperature T,, = O,, - zD/L varies with the 
resealed vertical coordinate 5 = =DiL at .Y = 0 
(centerline) and z = +_ 0.5 (sidewalls). In the figure the 
diagonal straight line corresponds to the temperature 
variation, at all .Y, when the sidewall radiant exchange 

is suppressed or if the sidewalls are perfectly conduct- 
ing. Characteristics of the temperature field include 

relatively steep vertical gradients near the horizontal 
plates, a reduction of the vertical gradient in the fluid 
core (.u = 5 = 0) compared to that if there were only 

conduction and small horizontal temperature differ- 
ences in the fluid. which drive a base flow convection 
pattern as indicated in Fig. 7. These effects are due to 

the sidewall radiative exchange which tends toward a 
uniform temperature on the sidewalls; that is, in the 

absence of all conduction and when i:Z or L/D is small, 
the sidewalls are isothermal, and temperature jumps 
occur at each end. Vertical conduction in the fluid and 
walls and the endwall radiative transfer for finite L/D 
and >:Z oppose this tendency. 

The vertical temperature gradient at .x = 2 = 0 is 

listed in Table 2 as a function of L/D, H, and i:Z for I:, = 

1. The temperature deviation from a linear vertical 
profile is most pronounced when the sidewall em- 
issivity E, is high, the endwall emissivity i:; is low, the 

wall conduction parameter H is low, and the 
radiation<onduction parameter is high. Other para- 
meters fixed. the radiation effects on the fluid and 
sidewall temperature are maximized at a certain aspect 
ratio L/D. For instance, the results in Table 2 indicate 
that the minimum slope ~ ?T:i!(O, 0) occurs for a L.:D 
between 4 and 8 when I:, = 1, I:: = 0, H = 0.03, and 
N,, = 4. 

Table I. Cell characteristics 

L D 
Cell (mm) (mm) L/D W/L H i:, 

1 24.9 6.22 4.00 12.2 0.76 0.03 
2 24.7 6.17 4.M) 12.3 0.76 0.9 
3 24.7 6.17 4.00 12.3 0.76 0.9 
4 24.7 6.17 4.00 12.3 0.76 0.9 
5 43.2 5.97 1.234 7.06 1.70 0.9 
6 43.2 5.97 7.234 7.06 1.70 0.9 
1 43.2 5.97 7.234 7.06 1.70 0.9 

N ,) 

0.03 0.1 0.1 1.39 
0.03 0.1 0.1 1.38 
0.9 0.1 0.1 1.38 

0.03 0.9 0.9 1.38 
0.03 0. I 0.1 1.33 
0.03 0.9 0.1 1.33 
0.03 0.9 0.9 1.33 



Stability of a fluid in a finite slot heated from below 1369 

FIG. 
4 

,4. Base flow vertical temperature variation. L/D = 4. 
8, = 1, H = 0, and N, = 5 

LID alb 

2 1.1 
2 1.1 
2 1.2 
2 1.1 
2 1.2 
4 1.1 
4 1.1 
4 1.3 
4 1.1 
4 1.3 
4 1.1 
4 1.1 
4 1.3 
4 1.1 
4 1.3 
4 1.1 
4 1.1 
4 1.3 
4 1.1 
4 1.3 
4 1.1 
4 1.2 
4 1.3 
4 1.2 
4 1.3 
6 1.1 
6 1.1 
6 1.3 
6 1.1 
6 1.3 
8 1.1 
8 1.1 
8 1.2 
8 1.1 
8 1.3 

LID 

Table 2. Base-flow state, 6z = 1.0 and N, = 4.0 

H 4 - dT/&(O, 0) vo. lndk 

2 0.03 0.0 0.74 0.245 
4 0.03 0.0 0.57 0.079 
4 0.30 0.0 0.65 0.064 
4 0.03 1.0 0.80 0.029 
4 0.30 1.0 0.83 0.026 
6 0.03 0.0 0.55 0.031 
8 0.03 0.0 0.57 0.014 

Table 3. Critical Rayleigh numbers 

H 

0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.10 
0.10 
0.10 
0.10 
0.10 
0.30 
0.30 
0.30 
0.30 
0.30 
1.00 
1.00 
1.00 
1.00 
1.00 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 

C, c, ND 

0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
I 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 
0 
1 0 1 
1 0 4 
1 1 1 
1 1 4 

287.0 287.0 
362.8 332.3 
529.1 414.0 
351.0 334.6 
471.5 417.3 

45.6 45.6 
79.8 67.3 

173.7 112.5 
74.7 68.8 

137.0 114.8 
51.1 51.1 
83.6 71.9 

171.8 115.2 
79.0 73.3 

138.7 117.4 
65.5 65.5 
94.2 84.0 

169.9 122.5 
90.4 85.3 

143.6 124.5 
105.0 105.0 
124.3 116.8 
174.9 142.8 
121.4 117.5 
158.8 144.3 

18.1 18.1 
38.4 31.5 
99.8 62.9 
35.6 32.5 
77.1 64.7 

9.73 9.73 
23.5 19.1 
66.2 42.5 
21.7 19.7 
51.9 44.0 

Table 2 also contains values of the magnitude of the 

maximum base flow velocity, u,, , max, which occurs near 

x = 0 and Z = f0.2. To convert these numbers to 

dimensional values, the uO,,,._ are multiplied by cc/D. 
For air at room temperature and D = 0.5 cm, cc/D = 
0.35 cm s-i. It is noted that the velocity field induced 
by sidewall radiant exchange is quite small in most of 
the cases considered in this investigation. 

Critical Rayleigh number numerical results 
The critical Rayleigh number was computed from 

equation (26) by 3- and 5-term Galerkin approxi- 

mations. The 3-term values were essentially converged, 
since the 3-and 5-term calculations differed only in the 

fourth significant digit. In fact, l-term Galerkin so- 
lutions are fairly good approximations to the con- 
verged solutions. 

RaX., 
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In Table 3 there are listed values of Ru,,,~ evaluated 
by a 3-term expansion and with simplification number 
(1) described in section 3, that is, with base-flow 

convection neglected. Spot checks on Ra,),, computed 
with and without this simplification indicate agree- 
ment to I:‘, for L/D = 2 and 0.3”,, for L,‘D 3 4. 

The ratio u/b. where u is the horizontal wavenumber 

and h = rcD/L, specifies the shape of the rolls at 
instability. If& = 1 the rolls are square, and if u/h > 1 

the width of the rolls is less than the height. The value 
taken on by u/h is that which minimizes the critical 
Rayleigh number (Fig. 5). The ratios u/h indicated in 

Table 3 are within f0.05 of the values that minimize 
Ra,,,. In the limit of adiabatic walls (H and J:, zero) 
and large LID, square rolls (a = b) minimize Ru,),,. As 
indicated in the table, the influence of wall conduction, 
radiation and finite L.!D is to require u,,,,, > b; that is, 

the higher buoyant energy per unit of sidewall area 
associated with low width-to-height rolls is necessary 

to balance the additional dissipative effects due to 

endwall shear and wall conduction and radiation. 
Table 3 also contains values of the critical Rayleigh 

number, denoted Ra:,,,, evaluated with simplification 

number (2), that is, with neglect of both convection and 
radiation upon the base state temperature. The dis- 

crepancies between Ru,),, and Ru:,,, in the table 
indicate that the simplification is not justified; how- 

ever, the Ru*,,, values are useful in distinguishing 
between (1) the effects of predominantly transverse (J’- 
direction) sidewall radiative exchange in damping out 
thermal perturbations in the fluid and (2) the influence 

of the axial (:-direction) radiative exchange on the 

temperature field before instability. For instance, 
consider the case L/D = 4 and tf = 0.10. When 
radiation effects are absent, Ru,,,, is 51. When l; = 1, 

G = 0, and N,, = 4 the critical Rayleigh number is 
increased by 237”,, to 172. For reference, RcI$, = I 15. 
Part of the 237”,, increase in Ru,),,. let us say 
(115-51)/51 = 125”“, isdue to the stabilizingeffect of 
transverse sidewall radiation in damping out thermal 
perturbations in the fluid, and the remainder, an 

190 

r 

RaD,c 

180 

! / 
a/b 

FIG. 5. Critical Rayleigh number vs ratio u/b. L/D 
8;; = 1, TV = 0, H = 0.03, and N,) = 4. 

= 4. 

additional 112’>,, is due to the influence ofaxial sidewall 
radiation on the base flow temperature field. 

The numerical results indicate that the combined 
effect of transverse and axial sidewall radiant exchange 
in the finite slot always stabilizes the fluid from the 
growth of small disturbances. Highest stabilization 
occurs when N ,) is high, the sidewalls are black, and the 
endwalls are non-emitting, that is, when the axial 

endwall radiation is low. Increasing the endwall 

emissivity destabilizes the fluid. Since Ru,),,, but not 

R&X? is influenced significantly by x,, it is apparent 

that the destabilizing effect of endwall emissivity is due 
to the influence of axial endwall radiation in steepen- 
ing the base flow temperature gradient in the center of 
the slot (see also Table 2). 

The combined action of wall conduction and radi- 
ation is complex, since in some circumstances the 

critical Rayleigh number Ru,),~ can first decrease upon 

increasing H from zero, pass through a minimum, and 
then increase with further wall conduction. An ex- 

ample of this behavior in Table 3 is the case L/D = 4, 
F; = I, r; = 0, and N ,) = 4 with parameter H = 0.03, 

0.10, 0.30 and 1.00. In the absence of radiation, wall 
conduction always stabilizes the fluid [4, 91. Hence, 
with strong radiation coupling, the destabilizing in- 

fluence of increasing wall conduction at low H is due to 
axial wall conduction counteracting the axial sidewall 

radiative coupling on the base flow vertical tempera- 
ture gradient in the fluid core. 

Esprrimentul rrsults 
Figures 6-8 show typical infinite fringe interfero- 

grams recorded with cells 7, 1 and 2, respectively. Each 

fringe is the locus of equal optical path length through 
the test cell and, hence, are isotherms averaged in they- 

direction. The temperature difference between con- 
secutive fringes is 2.3 C at 7‘,,,, = 300K. At other 
temperatures the AT:fringe goes like ( T/T,,,J2. In the 
present study accurate results could be obtained with 
the infinite fringe technique for AT > 25XZ. For lower 
AT it was found to be advantageous to use the finite 
fringe technique [16], but the interferograms are not 
shown here, since the infinite fringe interferograms are 
better suited to illustrate the qualitative features of the 
temperature field inside the test cells. 

In Fig. 6. variations in the temperature field over the 

11 cells are indicated. This figure demonstrates that 
edge effects influence only the two outermost cells; the 
central cells are free of edge effects. 

The interferograms in Fig. 7 depict the isotherms in 
cell 1 in which radiation effects are small (x, = 0.03 and 
L( = i:,H = 0.1). In Fig. 7(a) the Rayleigh number is 
just above the critical value as indicated by the nearly 
uniform fringe spacing, and the heat transfer is mainly 
conductive. At higher Ru,, in Figs. 7(b)-(d), Benard 
cellular convection in the form of multiple rolls with 
axes in the .x-direction, is characterized by fringes 
which are widely spaced in the central regions of the 
cells where convectional transport dominates and 
which are narrowly spaced near the horizontal boun- 
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Rap= 78.3 

a 

Rap= 89.3 

b I 

I 
cm 

Ra,=117 

c 
FIG. 6. Interferograms, cell 7 (see Table 1) 

daries where conductional transport dominates. Note 
also that the fringes are curved, indicating horizontal 
temperature differences, due to sidewall conduction. 

Figure 8 shows interferograms for celI 2 which is 
identical to cell 1 except that the sidewalls have high 
emissivity. In Fig. S(a) the Rayleigh number is close to 
Ra ,,E; the influence of sidewall radiation on the base 
flow temperature field is apparent in the curvature and 
relatively close spacing of the fringes near the horizon- 
tal plates. After instability, Figs. 8(b)-(d), the tempera- 
ture fields are qualitatively similar to those in Fig. 7. If 
a comparison is made at a particular Ra, e.g. Figs. 7(c) 
and S(c), the suppression of convection due to sidewall 
radiative exchange can be seen in the fringe spacing; in 
Fig. 7(c) the spacing near the centers of the cells is 
somewhat greater than that in Fig. 8(c). 

The data reduction for the finite fringe interfero- 
grams involved determining the variation of tempera- 
ture with Z at x = 0 and plotting the dimensionless 

negative vertical temperature gradient at Z = + 0.5, or 
Nusselt number, vs the Rayteigh number. For the finite 
fringe interferograms it was not necessary to obtain T 
vs 5data since thevertical temperature gradients could 
be obtained directly from interferograms. Figures 
9- 11 show Nu vs Ra, plots for cells 1-7. The solid lines 
are curve fits through the data points. The intersection 
of two curves, one through low (before stability) and 
the other through high (after instability) Ra, data, 
fixes the experimental critical Rayleigh number. These 
numbers are tabulated in Table 4. Note that for cell 6, 
in which the plates have different emissivities, the 
Nusselt numbers evaluated at i = 10.5 are not the 
same, because the higher radiative flux at the high 
emissivity end requires a lower conductive heat flux 
and vice versa. The curve intersections indicate 
approximately the same value of critical Rayleigh 
number, however. 

The influence of sidewall emissivity on RaD.= for L/D 
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c Rap= 163 d Rap= PO4 

FIG. 7. Interferograms, cell I (see Table I). 

= 4, H = 0.76, N, = 1.4, and low endwall emissivity is 

seen by comparing the results for cells, 1. 2, and 3 in 
Table 4. When l;x = t+ = 0.03, Ru,,,< = 9X. As the 
emissivity of the long sidewall, lil-, is increased to 0.9 the 
critical Rayleigh number is augmented by 29:‘,, and, if 
in addition the emissivity of the short sidewall, E,, is 

increased to 0.9, there is a further Xl;;, increase in Ra,),,. 

As theory predicts, there is a slight decrease in Ra,,., 

when the endwall emissivity is increased (cell 4). 
The data for cells 5-7 show that the critical Rayleigh 

number for the slot with unequal plate emissivities lies 
between the values for slots with two low emissivity 
plates or with two high emissivity plates. This result 
was also reported by Smart et al. [ 131 for the slot with 
low emissivity top and high emissivity bottom plates. 

Comparison of numerical and experimental results 

The experimental critical Rayleigh numbers are 
compared to 3-term Galerkin Ra,),, calculations in 
Table 4. Also listed is the percentage difference be- 
tween the two values. In all but one case the numerical 
analysis slightly underpredicts the critical Rayleigh 

number. The worst case of 9% difference is for cell 3 in 
which i:, = 0.9, for which the slot analysis has no 

provision. Conducting and radiating walls at y = 
OSW/D would be expected to have a stabilizing 
influence on Ra,,,, as indicated by the experimental 

results. 
Additional comparisons are made in Table 5 in 

which the 5-term Galerkin numerical and experimen- 
tal values of the base flow vertical temperature gradient 
at 2 = - 0.5,0.0, and 0.5 are listed. The values agree to 
within 5”/, except for one case in which the deviation is 

9%. 
The numerical critical Rayleigh number calcu- 

lations are compared to the experimental data of 
Smart et al. [ 131 in Table 6. In that study the authors 
determined Ra,,, from calorimetric Nusselt vs Ray- 
leigh number heat transfer data for air-filled, high 
horizontal aspect ratio (W/D = 44), multiple- 
communicating cells. For set ups 1,2 and 3 the sidewall 
partitions were constructed of polyethylene film which 
was significantly transparent to thermal radiation. 
However, the authors noted that, because of symmetri- 



Stability of a fluid in a finite slot heated from below 1373 

a Ra, = 133 b 

I lcm , 

c Ran=167 d Rap 833 

FIG. 8. Interferograms, cell 2 (see Table 1). 

cal convective motions in adjacent cells, the sidewalls endwali emissivity is low, the predicted critical Ray- 
can be treated as having an effective specular re- leigh number agrees well with experiment ; however, if 
flectivity equal to 1 - cX. The sidewall partitions for set the endwail emissivities are high the present Galerkin 
ups 4, 5 and 6 were radiation-opaque. solutions overpredict RaD,, by 17%. 

For set ups 1, 2 and 3 the experimental and 
numerical results differ by no more than 12% even 
though the sidewalls are assumed to be diffuse in the 
analysis. When the sidewall emissivity is high and 

25 

20 

NU 

15 

1.0 

6. SUMMARY 

The main results of the study are as follows: 
(1) Sidewall and endwall radiation in the finite slot 

30 

CELL 
2 

0 I 
A 2 

0 3 

04 

Nu 

CELL 
0 5 

0 7 

20 

10 
1 

FIG. 9. Nusselt number at x = 0 vs Rayleigh number, cells FIG. 10. Nusselt number at x = Ovs Rayleigb number, cells 5 
l-4. and 7. 
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30 c 
CELL 6 

z= -05 

f= +os 

! J 
100 17.c 

Frc;. 11. Nusselt number at x = Ovs Rayleigh number, cell 6. 

enclosure affects the critical Rayleigh number by 
essentially two separate mechanisms : 

(a) Axial radiation influences the base flow tempera- 
ture distribution in the fluid before instabiIity. 

(b) Transverse thermal perturbations in the fluid are 
damped by radiative exchange between sidewall ele- 
ments adjacent to the perturbed hot and cold fluid 
regions. High sidewall emissivity is stabilizing in both 

these mechanisms while high endwail emissivity acts to 
destabilize in the first mechanism. 

(2) Sidewall radiant exchange in the finite slot 
stabilizes the fluid, and, in the absence of radiation 
effects, wall conduction stabilizes the Ruid as well. 
However, when both radiation and wall conduction 
effects are important it is possible for wall conduction 
to be destabilizing at low values of the wall conduction 
parameter. This behavior is due to the opposing 
tendencies of sidewall radiation and conduction on the 
base flow temperature field. 

(3) The numerical predictions agree with present 
and previous experimental data to within I?,, except 
for one data point. 
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APPENDIX 

THE PRINCIPLE OF EXCHANGE OF INSTABILITIES 

Sherman and Ostrach [19] derived a proof of the principle 
of exchange of instabilities for a completely confined fluid 
with conducting sidewalls. For the present situation being 
analyzed the analogs to their equations (20a) and (20b) are 

Re(n)(Rad, - Pr-’ I,) + I, + Ra,,l, - Pr-’ I, = 0 

(27) 

Im(n){Rad, + Pry’ I,) = 0 (28) 

where n is a complex number in the time dependency factor 
e”‘. The volume integrals are 

I, = I II* V”udV, 
Y 

[vO. v+* + II* VB, - 4V’ 4 *]dV, 

I, = 1 II u*dV, 
JI 

I,= 1 II* (V uv,)dV 
JC 

where the asterisk denotes the solution corresponding to the 
complex conjugate of n, n*. 

If the Rayleigh number is positive, i.e. the fluid is heated 
from below, equation (28) implies that the imaginary part of 
n is zero since integrals I, and I, are positive. Depending on 
the characteristics of the base flow, v0 and t&. a positive Ra, 
may or may not satisfy equation (27). If it does, the critical 
disturbance is stationary at marginal stability. 

EFFET DU RAYONNEMENT A LA PAR01 ET DE LA CONDUCTION SUR LA STABILITE 
D’UN FLUIDE DANS UNE FENTE FINIE CHAUFFEE PAR LE BAS 

R&urn&On dltermine le nombre de Rayleigh critique pour un fluide limit6 par des parois parallZles 
verticales de hauteur finie. Le fluide dilatable, radiant et diathermane est chauffk par le bas et refroidi en haut, 
sur les extrCmit& rigides qui ont des imissivit& 6gales mais quelconques. Les paroisverticales sont minces et 
conductrices,elles ont des CmissivitCs uniformeset arbitraireset elles sont adiabatiques B I’extlrieur. Leseffets 
du rapport de forme, de la conductance de paroi, des dmissivitls sur le nombre de Rayleigh critique sont 
d&ermines analytiquement par la technique de Galerkine et sont expirimentalement confirm&s par 

interfkromdtrie holographique. 
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DIE EINFLUSSE VON STRAHLUNG UND LEITUNG DER WAND AUF DIE STABILITAT 
EINES FLUIDS IN EINEM ENDLICHEN SPALT BE1 BEHEIZUNG VON UNTEN 

Zusammenfassung-Es wurde eine kritische Rayleigh-Zahl fur ein Fluid ermittelt, welches durch senkrechte, 
parallele Wande von endlicher Hohe begrenzt wird. Das thermisch ausdehnungsfahige, 
warmestrahlungsdurchlassige Fluid wird durch AbschluBwande von unten beheizt und von oben gekuhlt. 
Die AbschluBwande haben eine bestimmte gleiche Emissivitat. Die vertikalen Wande sind dunn und leitend, 
haben eine bestimmte gleichmal3ige Emissivitdt und sind an den auPeren Oberflachen adiabat. Die Einflusse 
von Seitenverhaltnis, Warmeleitung der Wand und Emissivitaten an den &ten- und AbschluBwCnden auf 
die kritische Rayleigh-Zahl werden analytisch nach der Galerkin-Methode bestimmt und experimentell 

durch holografische Interferometrie bestatigt. 

BJIMIlHME M3JIYqEHMI1 M TEnJlOnPOBOflHOCTM CTEHKM HA YCTOtiYMBOCTb 
~KMAKOCTM B HATPEBAEMOti CHM3Y UEJIM KOHEYHbIX PASMEPOB 

AimoTalutn-nonysetro wiavewe kpurmreckoro qncna Penen nnn ~~LIKOCTU. Haxonamefcn Memny 

eeprnxanbm.tMu napannenbnbn4n crenkah4u KouernoA BblcoTbl. Pacmipmouaxcs npki HarpesaHmi, 

nponycKarouaR si3nyYeHse mimocTb nonorpeBaeTcn ctni3y H 0xnaxnaeTcK ceepxy qepes Tsepnbre 

TpaHHUbI. OHM HMeIOT npOH3BOJlbHyK). HO paBHylO L43_7y~aTeJbHyI‘I CnOCO6HOCTb. ToHKHe M 

TCnJlO~pOBO~Hble BepTHKaJlbHbIC CTCHKH HMUOT IIpOH3BO~lbHykO OiIHO,,OL,HyW kf3”yWTC”bHyEO 

CnOCO6HOCTb M C BHeI”Hefi CTOPOHbl Te~~-,OM3O~MpOBaHbl. MeTonoM raJE,lKHHa On,YZ.lICJTCHO BJIHRHHC 

reor4erpiiqecxoro napahlerpa. ,,pOBOL,HMOCTH 6OKOBbLX CTCHOK M M3Jy’IaTC”bHbIX CIlOCO6HOCTCti 

60KOBbIX CTCHOK II TOpL,CBblX FlOBepXHOCTeii Ha KpHTHYeCKOe 9HC,lO PeJeSI k3yJbTaTbl p2iCWTOB 

nOnTsep~nCHb,3KCnCp~MeHTa,,bHO C nOMO",bK) rOJOrpa@VfCCKOi? HHTCp~CpOMCTpMM. 


