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Abstract—Critical Rayleigh number is found for a fluid bounded by vertical parallel walls of finite height. The

thermally expansive, radiatively diathermanous fluid is heated from below and cooled from above at rigid

ends. The ends have arbitrary but equal emissivity. The vertical walls are thin and conducting, have arbitrary

uniform emissivity, and are adiabatic on their exterior surfaces. Effects of aspect ratio, side wall conductance,

and side and end wall emissivities on critical Rayleigh number are found analytically with the Galerkin
technique and confirmed experimentally with holographic interferometry.
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NOMENCLATURE Greek symbols
o, thermal diffusivity ;

a, wavenumber ; B, volume expansion coefficient ;
A, area; R perturbation in irradiation;
A, B, C D, E, F, coefficients; AT, temperature difference between horizon-
b, nD/L; tal plates;
c, even beam function; g, emissivity ;
D, distance between sidewalls; 6, dimensionless temperature;
é., é, é,, unit vectors; A, transcendental root;
f, velocity trial function; u, dynamic viscosity or transcendental root ;
g, acceleration of gravity; v, kinematic viscosity ;
G, irradiation ; T trial function;
H, dimensionless conduction number ; 0, density;
i,j, k, I, integers; o, Stefan—Boltzmann constant ;
I, integral ; T, trial function ;
k, thermal conductivity ; &b, perturbation in 6;
K, shape factor kernel; v, trial function.
L, distance between hot and cold plates;
N, summation limit; Subscripts
M, matrix element; C, critical value;
n, complex number ; C, cold plate;
N, radiation—conduction number, D, based on length D;

(46 T2D)/k; H, hot plate;
Nu, Nusselt number at x = 0 and y-averaged ; i,j, k, |, summation integers;
v, perturbation in pressure; m, mean value or evaluated at mean
P, pressure; temperature;
Pr, Prandtl number, v/a; L, based on length L;
q, heat flux or transcendental root; 0, base flow state;
Ray, Rayleigh number, gBATD*/vaL; r, radiation ;
s, odd beam function; w, wall;
S, irradiation integral; X, at x = +0.5;
t, thickness or time; v, aty = +0.5W/D.
T, temperature;
u, v, velocity ; Superscripts
v, volume;; *, complex conjugate or effect of radiation
W, distance between sidewalls, W >» D; on base flow neglected;

x, y, z, Z, spatial coordinates.
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derivative or dummy variable.
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1. INTRODUCTION

THE PREDICTION of the onset of motion in a right
rectangular cylinder of height L and of large horizontal
aspect ratio W/D is considered. For example, the
thermal designer may wish to size a rectangular
honeycomb to suppress convection in a Francia type
solar collector [1, 2].

Wooding [3] treated 3-dim. convective disturbances
in a fluid bounded by two parallel rigid vertical walls
and by shear-free top, bottom and ends when the fluid
was subject to a destabilizing vertical temperature
gradient. He found that the critical Rayleigh number
based on wall spacing D depends on horizontal and
vertical wavenumbers when the walls are adiabatic and
is n* when the walls are perfectly conducting. Edwards
[4] showed that if the walls are arbitrarily conducting
in a finwise manner, the critical Rayleigh number is a
function of two wavenumbers and the dimensionless
quantity H = k,t,/(kD) where k,, is the wall con-
ductivity, 1, is the wall thickness, and k is the fluid
conductivity. The analysis was extended [ 5] to include
the slot whose walls conduct arbitrarily and exchange
radiant energy through a diathermanous fluid. The
wall radiative exchange, like wall conduction, stabil-
izes the fluid from convective disturbances by adding
thermal damping.

To account for the rigid top and bottom, Edwards
and Sun [5] suggested using the infinite slot solution
and adjusting the vertical wavenumber. Davis [6] and
Catton [7 9] derived the critical Rayleigh number for
a radiation-opaque fluid without recourse to an adjus-
ted wavenumber approximation by applying the Gal-
erkin technique.

Experimental data on the onset of motion and heat
transfer after instability have been reported for
radiation-opaque silicone-oil-filled slots [10, 11] and
radiation-transparent air-filled slots [12, 13]. The
results of Smart, Hollands, and Raithby [13] indicate
that the emissivity of the top and bottom enclosure
surfaces, which is not accounted for in existing theory
[5]. has a significant effect on the critical Rayleigh
number.

The objective of the investigation reported in this
paper was to apply the Galerkin technique to de-
termine the critical Rayleigh number for the finite slot
filled with a diathermanous fluid and having arbit-
rarily finwise-conducting vertical walls and arbitrary
vertical and horizontal wall emissivity. The present
analysis incorporates the effect of the radiation on the
temperature and velocity fields in the fluid before
instability. Experimental data for air-filled slots ob-
tained by holographic interferometry are also
reported.

2. FORMULATION OF PROBLEM

Initially a thermally-expansive and radiation-
transparent fluid fills a finite slot (finite L/D and
infinite W/D) as shown in Fig. 1. The upper horizontal
boundary is isothermal at T, the lower horizontal
boundary is isothermal at higher temperature T,;, and
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FiG. 1. Cell geometry and coordinate system.

the vertical walls (sidewalls) conduct isotropically and
partially reflect thermal radiation diffusely. Due to
radiative exchange between the sidewalls of the slot,
the vertical temperature variation is not linear, as
would be the case when radiation heat transfer is
absent or the sidewalls are infinitely conducting. Thus a
weak 2-dim. base-flow convection occurs. For a Bous-
sinesq fluid, the base flow temperature and velocity
fields in the fluid are governed by the dimensionless
equations

Vovg =0, (1
Vv, — VP, + Ray(L/D)0é. — Pr v, - Vv, = 0,

(2)

V20, — vo VO, + (D/L)vg -6, =0 (3)

where v, 0,, and P, are the velocity, temperature
deviation from linearity, and pressure measured in
units of a/D, AT, and (ep)/D?, respectively. The
coordinates are measured in units of lateral distance
D Pris the Prandtl number ; and the Rayleigh number
based on D is

Ra,, = (gBATD?*)jvalL.
The boundary conditions on velocity are

1
and z = + - —.

=

vo=0o0on x=+

S A
(%}
o)

The temperature is subject to
4 0 + L
=0 on z=+4 -~

¢ —2D

and, assuming that the sidewalls are insulated on the
exterior and thin enough to justify the fin
approximation,

H 00, N (7200) 4 00, " n 1 @)
R L g, 0N X = + -
oyt ozt - o 2

cx

where H = (k,t,)/(kD)and q,, is the net radiation flux
out of the wall, measured in units of 46 T3AT. When
AT « T, as required by the Boussinesq approxi-
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mation, the radiation flux can be expressed in lin-
earized form

4o = &N pll — Go) (5)

where ¢, is the emissivity of the sidewalls (x = +0.5),
N, = (46T3D)/k is a radiation-conduction para-
meter, and G, is the dimensionless irradiation flux
indicated by the integro-equation

Gy = J [£0, + (1 — )Gy + (D/L)(z — ZY]KdA’
| 6)

where K is the shape factor kernel between differential
wall areas dA and dA’. The horizontal walls are
assumed to have equal (diffuse) emissivity &, and
specular reflectivity 1 — ¢ in order to simplify the
evaluation of G,,.

Small, 3-dim. Bernard-type convective disturbances
from the base flow state are assumed, and second-
order terms are neglected. At marginal stability (see
Appendix) the perturbations in velocity, temperature,
and pressure, u, ¢, and p, respectively, are governed by

V-u=0, N
Viu — Vp + Ra,(L/D)pé, — Pr- 'V -uv, =0, (8)
V2p + (D/Lu-¢, — vy Vb —u-V8, =0. (9

The boundary conditions are

1 1L
u=0 onx=+- and z=+ ——
2 2D
1L
= = 4+ ——
¢=0 on:z 35
and
H ¢ + e + ¢ + + ! (10)
—_— _— | = . X = —
ﬁyz 322 T q, on 5
where
4 = ‘(;le)(d)_’)‘) (11)
and

7 =G — Gy = J [€d + (1 — ¢)y]KdA. (12)
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Fia. 2. Schematic of base flow velocity field.
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Equations (7)-(9), subject to the boundary con-
ditions, and the base flow solution v, and 8, constitute
an eigenvalue problem for the Rayleigh number. The
lowest positive Raj, which satisfies the equations is the
critical Rayleigh number, Ra, .

3. METHOD OF SOLUTION

The base flow and thermal stability eigenvalue
problems formulated in the previous section are solved
by the Galerkin technique (e.g. [14]).

Base flow
The base flow velocity, temperature, and pressure
are approximated by

2

Vo = » Agi fodx, 2),
i=1
N
o = Z [BoiToilx, 2) + Coloilx. 2)],
i=1
N
Py = Z Fomoix, 2)

Il
—_

i
where Ay, By, Co;, and Fy; are unknown coefficients
and f;, 7o; ¥qi and my; are trial functions which have
sufficient freedom to resemble the variable being
approximated.

For the velocity field there were chosen trial func-
tions f,; which satisfy continuity and the no-slip
boundary conditions, that is

¢ Ds()’ D 5+ s(x) D\,
L= - — S T — e sHx)s; | —
013 lesx LZ x i S; LZ €;

where

_sinh(px)  sin(ux)
S = Gnh(e2)  sinGa2)

are the odd series of beam functions. The roots y; are
selected to make the derivatives, s)(x), equal zeroat x =
+0.5 and are tabulated in ref. [ 15]. A schematic of the
base flow velocity field being approximated is shown in
Fig. 2.

The mixed Galerkin method [14] is employed in the
temperature field approximation, since neither the
energy equation (3) nor the sidewall boundary con-
ditions (4)-{6) can be satisfied by the chosen trial
functions. Hence, one set of functions, 1;, selected so
that each satisfies the 2-dim. Laplace equation, are
employed in the solution to the boundary conditions,
and another set of functions, /o, each of which satisfies
the homogeneous sidewall boundary conditions
approximately are used in the solution to the momen-
tum and energy equations, equations (2) and (3).
Suitable functions are

to; = cosh[2mi(D/L)x] sin[2mi(D/L)z}(L/D),
Woi = cos|nqyx] sin[2ni(D/L)z)(L/D)

where fractional coefficients ¢, are determined so that
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each function ¥, satisfies the homogeneous sidewall
boundary conditions in a Galerkin manner. Specifi-
cation of m,; is not necessary.

The unknown coefficients in the variable expansions
are determined by substituting the expansions into the
appropriate differential equations or boundary con-
ditions and forcing the resultant errors to be ortho-
gonal to the trial functions over the domain of the
independent variables [14]. The resulting Galerkin
orthogonality relations for equations (4), (2) and (3)
are, respectively,

N
Y Boii[4n%i*(D/LYH + 2mi(D/L) tanh (niD/L)
=1

+ 15.‘~Nn]f5ij - ?3xN1)E0ij}' = ’ier)DOjs (13)
N
Z {AgiMgy 1 + CoRapMoyy))
=1
N
= — Ra,, Z BOkM013jk
k=1
NN
+Prot Yy Y AgAgMorape  (14)
k=11-1

N N
Z {AOI[MOZUJ' - Z BOkMOZZijk] + COiM023ij}
i=1 k=1

N N

= Z Z AOICOkMOZAjkIs (15)

k=11=1

i=1....N

where the matrix elements in equations (14) and (15)
are volume integrals as follows:

"

MOllij: ’ij'szo.‘dV,

MOlZij = f0j 'éz'//oi dv,
JV
r

My = | fo; €t dV,
vV

(V- for fo) dV,

MOZlij: fOi'é:'//oj'dV,

Vv

My aju = J fo,
y

l//oj' fo; " Vo dV,

M022ijk =

T

A’Iozau =

L_ﬁ

YoV2o:dV,
v

M024jkl = J< Wo: fox - Vwo,' dv,
v

and where E,; and D,; in equation (13) are the
solutions to the linear equations

N
Z Eouldn — (1 — £)8au] = &S (16)

k=1
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N
Y Dol 0 — (1 = £IS,,] = S5 (17)
k1

if=1,..,N

and
0.5LD
SZlk = 2(D/L) [
J-0S5LD

x j sin [2nl(D/L)z] sin [2nk(D/L)z'] KdA'dz (18)

0.5L:D

Sy = 2(D/L)f

-05LD

X [ sin [2zl(D/L)z] (z — z') KdA'dz. (19)
JA
The last four expressions arise from the Galerkin
solution to the integro-equation (6). The matrix vol-
ume integrals (— 0.5 < x € 05and - OSL/D <z <
0.5L/D) are evaluated analytically, and integrals con-
taining the pressure vanish due to the solenoidal
nature of the velocity trial functions.

The values of g,; in the ¥, trial functions are the
roots to the transcendental equation

43 (D/LYH + &N (1 — Eqy)

— 7gy; tan (go;m/2) =0 (20)

0<qo, €1, 2<¢g, <3, cetc.
Perturbation equations

The solution to equations (8) and (9) are approxi-
mated by

N

u= Y A4;fix y z),
i=1
N

¢ = Bii(x. y, z),

~
p= Z Fix, v, z)
i=1

where f; satisfy continuity and the no-slip conditions
and t; satisfy the boundary conditions approximately.

As shown by refs. [6-9] the most unstable mode of
convection is rolls whose x-component of velocity is
essentially zero. The velocity variation in y is periodic
with wavenumber a. Suitable velocity trial functions
are

f,= — %ﬁcos[(Zi — nx] sin (ay)e;[(D/L)z] é,
a

+ cos[(2i — lynx] cos (ay)¢;[(D/L)z]é,
where

_ cosh(4;x)  cos(4;x)

)= Cosh(2)  costA2)

are the even series of beam functions and 4, are selected
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so that the derivatives, ci{x), are zero at x = +0.5.

The temperature trial functions, which should have
the same vertical symmetry as the vertical velocity
component, are

1, = cos{ng,x) cos(ay) cos[(2i — V)n(D/L)z](L/D).

The coefficients g;, analogous to gy, are evaluated so
that equations (10)-(12) are satisfied approximately,
that is
[a® + 7*(2i — DAD/LYIH + e N1 — Ey)
~ng; tan{g/2)y =0 (21)
0<qg, <1, 2<¢q,<3 ¢etc.

where E,; are obtained from

N

Z Eik[ékl -~ ﬁx)suk] = &Sy

k=1

22)

and
Sy =

a /2 0.5L:D
{ J j f cos(ay) cos{ay’) cos[(2i —1)
—aj2 —0SL/ID JA

x 7 (D/L)z] cos[{2] — yn(D/L)z 1KdA'dydz

'aj2 0.5L:D
x { J‘ J- cos*{ay)cos?[(2i—1)
—ail J-O03LD

x n{D/L)z]d ydz}.

The latter two equations arise from the Galerkin
solution to the integro-equation (12).

The Galerkin orthogonality relations associated
with the momentum and energy equations, equations
(8) and (9), are

:
h

(23)

4

(AiM 1y + RapBM ) =0, (24)
1

il

i

(AM ;55 + BiM 5y, = 0, (25)

i

0=

j=1,..., N.
The matrix elements are

N
M,y = J £,V fdV — Pr-t ¥
14 k=1

Aok J f; - (V£ )dV,
v
M,,,; = jfj -é,1dV,
v

N
My, = jfi'ézrjdv — Z Bokf Tl - Vi dV
v k= v

1

v
-2 COkJ\ Tfi - Vo dV,
k=1 14

N
M22ij = J\‘erZ‘EEdV - Z AOkJ\ ijOk 'V‘tidV‘
Vv

v k=1

The volume integrations are over —0.5 < x < 0.5,
~0.5a € y < 0.54,and ~0.5L/D < z < 0.5L/D.
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Equations (24) and (25) have a non-trivial solution
{nonzero A; and B)) only if the determinate of the
2N x 2N matrix is zero, that is

Mllij RaDM!2ij
M,y M a5

ij=1,...,N.

det =0, (26)

The lowest root Ra, which satisfies this condition is
the critical Rayleigh number. It is noted that Ra, also
appears implicitly in M, M. and M, via the
base flow solution, ie. Ay, Bg, and Cy, coefficients.

The base flow temperature and velocity and critical
Rayleigh number were determined from the above
equations by standard matrix inversion and nonlinear-
root-extraction techniques. In order to interpret the
results values of Ra,  were also obtained for the
special cases of (1) no base-flow convection (4., and
Cyy set to zero) and {2) no base-flow convection or
radiation (Aq,, Bo,, and Cg, set to zero). Further details
on the numerical procedures including the evaluation
of theirradiationintegrals S,,; S,;;, and 85, are given in
ref. [16].

4. DESCRIPTION OF EXPERIMENT

Interferometer

The holographic interferometer is essentially that
described in ref. [17]. Coherent light (0.633 ym) froma
15 mW Spectra-Physics helium-neon laser is split into
an object beam and a reference beam by a variable-
silvered mirror, and each beam is expanded to a
100 mm diameter planar wave via a x 40 microscope
objective and collimating lens. Pinholes of 5 ym dia-
meter are located at the focal points of the microscope
objectives in order to eliminate intensity variations in
the wavefronts. The two wavefronts intersect at a
Kodak 120-02 photographic plate (here at an angle of
26°) and produce a hologram when the photographic
emulsion is exposed simultaneously to the two beams
and then developed in situ. The reconstructed object
beam wavefront, which is recorded when the tempera-
ture inside the test section is uniform, and the real-time
object beam wavefront, which is distorted by a non
uniform temperature field inside the test section, are
focused by an achromat lens and interfere to produce
an interferogram on Kodak Tri-X film. The in-
terferometer components are mounted to a 1.2 by
3.0 m vibration-isolated optical table.

Test cell

The test cell is constructed of two 102 x 30.6cm
and 0.95cm thick aluminum plates which are sepa-
rated by Bakelite spacers (Fig. 3) and are aligned
horizontally on the optical table so that the object
beam is paraliel to the long axis of the cell. The lower
plate is electrically heated, and the upper plate is
cooled to just above the dew point. The plates were
either polished (¢, = 0.1) or painted black (¢, = 0.9).

Sidewall partitions, which form 11 side-by-side cells
between the aluminum plates, are supported in
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F1G. 3. Test cell cross section, 1 cold aiuminum plate, 2 hot
aluminum plate, 3 sidewall partitions, 4 electrical heater, 5
insulation, 6 spacers.

0.79 mm wide and 1.27 mm deep milled slots, 6.73 mm
apart, in each plate along the long axis of the test cell.
The partitions were fabricated from either 0.51 mm
thick first-surface aluminized paper (¢, = 0.03,k,,, =
047 + 0.02W m~! K™ ') or a 0.76 mm thick paper-
phenolic laminate (¢, = 0.9,k,,, = 0.69 £ 0.03Wm™'
K ~!). In addition some runs were made with alum-
inized paper which was painted black.

The ends of the test cell (y = 0.5 W/D) were
aluminized paper (untouched or painted black)
backed on the exterior with 1.91 cm foam. The ends
were lifted up approx. 2s prior to recording an
interferogram.

Table 1 contains a list of the cell characteristics
investigated. Subscripts C and H denote the upper cold
and lower hot plate, respectively, to allow for unequal
plate emissivities. In each case the length of the test
section W was 30.6 cm.

Independent measurements of the aluminum plate
temperatures were made with chromel-constantan
thermocouples inserted in four drilled holes in each
plate.

Data reduction

Real-time infinite fringe and finite fringe interfero-
grams were recorded for the seven test-cells described
above for the temperature difference range 10 < AT <
40°C. The mean temperature of the air in the cell was
kept near 290 + 2 K. Between seven and eleven data
points (AT) were obtained for each cell.

Table 1. Cell characteristics

D. W. Hatrierp and D. K. Ebwarnps

The extraction of the temperature field, averaged in
v, from the interferograms was done by standard
techniques [16, 18]. The experimental data were
plotted as a Nusselt number (dimensionless vertical
temperature gradient at x = 0, averaged in y, and at =
= +0.5L/D)vs the Rayleigh number based on lateral
distance D. Fluid properties were evaluated at the
mean temperature.

Error analysis [ 16] indicated 5°, uncertainty in the
experimental Nusselt and Rayleigh numbers.

5. RESULTS AND DISCUSSION

Base flow numerical results

To illustrate the effect of wall radiation on the base
flow temperature field, Fig. 4 shows how the dimen-
sionless temperature T, = (}, — zD/L varies with the
rescaled vertical coordinate = = zD/L at x = 0
{centerline) and x = + 0.5 (sidewalls). In the figure the
diagonal straight line corresponds to the temperature
variation, at all x, when the sidewall radiant exchange
is suppressed or if the sidewalls are perfectly conduct-
ing. Characteristics of the temperature field include
relatively steep vertical gradients near the horizontal
plates, a reduction of the vertical gradient in the fluid
core (x = 7 = 0) compared to that if there were only
conduction and small horizontal temperature differ-
ences in the fluid, which drive a base flow convection
pattern as indicated in Fig. 2. These effects are due to
the sidewall radiative exchange which tends toward a
uniform temperature on the sidewalls; that is, in the
absence of all conduction and when ¢, or L/D is small,
the sidewalls are 1sothermal, and temperature jumps
occur at each end. Vertical conduction in the fluid and
walls and the endwall radiative transfer for finite L/D
and &, oppose this tendency.

The vertical temperature gradient at x = = 0 is
listed in Table 2 as a function of L/D, H,and ¢_for ¢, =
1. The temperature deviation from a linear vertical
profile is most pronounced when the sidewall em-
issivity ¢, is high, the endwall emissivity ¢, is low, the
wall conduction parameter H s low, and the
radiation—conduction parameter is high. Other para-
meters fixed, the radiation effects on the fluid and
sidewall temperature are maximized at a certain aspect
ratio L/D. For instance, the results in Table 2 indicate
that the minimum slope — T/°(0,0) occurs fora L/D
between4 and 8§ when ¢, = 1, ¢, = 0, H = 0.03, and
N, =4

L D

Cell (mm) (mm) L/D W/L H &y £, tac &n Ny,
1 249 6.22 4.00 12.2 0.76 0.03 0.03 0.1 0.1 1.39
2 24.7 6.17 4.00 12.3 0.76 09 0.03 0.1 0.1 1.38
3 24.7 6.17 4.00 12.3 0.76 09 0.9 0.1 0.1 1.38
4 24.7 6.17 4.00 12.3 0.76 0.9 0.03 0.9 09 1.38
5 432 597 7.234 7.06 1.70 0.9 0.03 0.1 0.1 1.33
6 432 5.97 7.234 7.06 1.70 0.9 0.03 0.9 0.1 1.33
7 432 597 7.234

0.03 09 09
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Table 2 also contains values of the magnitude of the
maximum base flow velocity, v, ..., which occurs near
x = 0and 7 = +0.2. To convert these numbers to
dimensional values, the v, ., are multiplied by «/D.
For air at room temperature and D = 0.5cm, «/D =
0.35cm s~ !. It is noted that the velocity field induced
by sidewall radiant exchange is quite small in most of
the cases considered in this investigation.

Critical Rayleigh number numerical results

The critical Rayleigh number was computed from
equation (26) by 3- and 5-term Galerkin approxi-
mations. The 3-term values were essentially converged,
since the 3- and 5-term calculations differed only in the
fourth significant digit. In fact, 1-term Galerkin so-
lutions are fairly good approximations to the con-
verged solutions.

Table 2. Base-flow state, ¢, = 1.0 and N, = 4.0

L/D H £ —0T/¢4(0, 0) o mas

2 0.03 0.0 0.74 0.245

4 0.03 0.0 0.57 0.079

4 0.30 0.0 0.65 0.064

4 0.03 1.0 0.80 0.029

4 0.30 1.0 0.83 0.026

6 0.03 0.0 0.55 0.031

8 0.03 0.0 0.57 0.014

Table 3. Critical Rayleigh numbers

L/D a/b H &y &, Ny Ra, . Ra}, .
2 1.1 0.03 0 287.0 287.0
2 1.1 0.03 1 0 1 362.8 3323
2 1.2 0.03 1 0 4 529.1 414.0
2 1.1 0.03 1 1 1 351.0 3346
2 1.2 0.03 i 1 4 471.5 4173
4 1.1 0.03 0 456 45.6
4 L1 0.03 1 0 1 79.8 67.3
4 1.3 0.03 1 0 4 173.7 112.5
4 1.1 0.03 | 1 1 74.7 68.8
4 1.3 0.03 1 1 4 137.0 114.8
4 1.1 0.10 0 51.1 511
4 1.1 0.10 1 0 1 83.6 71.9
4 13 0.10 1 0 4 171.8 115.2
4 1.1 0.10 1 1 1 79.0 73.3
4 13 0.10 1 1 4 138.7 1174
4 1.1 0.30 0 65.5 65.5
4 1.1 0.30 1 0 1 94.2 84.0
4 1.3 0.30 1 0 4 169.9 1225
4 1.1 0.30 1 1 1 50.4 85.3
4 1.3 0.30 1 1 4 143.6 124.5
4 1.1 1.00 0 105.0 105.0
4 1.2 1.00 1 0 1 124.3 116.8
4 1.3 1.00 1 0 4 174.9 142.8
4 1.2 1.00 1 1 1 1214 117.5
4 1.3 1.00 1 1 4 158.8 144.3
6 1.1 0.03 0 18.1 18.1
6 1.1 0.03 1 0 1 384 31.5
6 1.3 0.03 1 0 4 99.8 629
6 1.1 0.03 1 1 1 35.6 325
6 1.3 0.03 1 1 4 77.1 64.7
8 1.1 0.03 0 9.73 9.73
8 1.1 0.03 1 0 1 235 19.1
8 1.2 0.03 1 0 4 66.2 425
8 1.1 0.03 1 1 1 21.7 19.7
8 13 0.03 1 1 4 519 440
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In Table 3 there are listed values of Ra,, . evaluated
by a 3-term expansion and with simplification number
(1) described in section 3, that is, with base-flow
convection neglected. Spot checks on Ra,, . computed
with and without this simplification indicate agree-
ment to 19 for L/D = 2 and 0.3%, for L/D > 4.

The ratio a/b, where a is the horizontal wavenumber
and b = nD/L, specifies the shape of the rolls at
instability. If a/b = 1 therollsare square,and if a/b > 1
the width of the rolls is less than the height. The value
taken on by a/b is that which minimizes the critical
Rayleigh number (Fig. 5). The ratios a/b indicated in
Table 3 are within +0.05 of the values that minimize
Ray, .. In the limit of adiabatic walls (H and &, zero)
and large L/D, square rolls (¢ = b) minimize Ra,, .. As
indicated in the table, the influence of wall conduction,
radiation and finite L/D is to require a,;, > b; that is,
the higher buoyant energy per unit of sidewall area
associated with low width-to-height rolls is necessary
to balance the additional dissipative effects due to
endwall shear and wall conduction and radiation.

Table 3 also contains values of the critical Rayleigh
number, denoted Ra¥, ., evaluated with simplification
number (2), that is, with neglect of both convection and
radiation upon the base state temperature. The dis-
crepancies between Ra, . and Ra¥ . in the table
indicate that the simplification is not justified ; how-
ever, the Ra% . values are useful in distinguishing
between (1) the effects of predominantly transverse ( y-
direction) sidewall radiative exchange in damping out
thermal perturbations in the fluid and (2) the influence
of the axial (z-direction) radiative exchange on the
temperature field before instability. For instance,
consider the case L/D = 4 and H = 0.10. When
radiation effects are absent, Ra, . is 51. When ¢, = 1,
&, = 0, and N, = 4 the critical Rayleigh number is
increased by 2379, to 172. For reference, Ra%, . = 115.
Part of the 237%, increase in Ru, . let us say
(115—-51)/51 = 1259, 1s due to the stabilizing effect of
transverse sidewall radiation in damping out thermal
perturbations in the fluid, and the remainder, an

190 -

170

1.0 1.2 1.4 1.6

a/b

Fi1G. 5. Critical Rayleigh number vs ratio a/b. L/D = 4,
& =1, =0, H =003, and N, = 4.
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additional 1129; is due to the influence of axial sidewall
radiation on the base flow temperature field.

The numerical results indicate that the combined
effect of transverse and axial sidewall radiant exchange
in the finite slot always stabilizes the fluid from the
growth of small disturbances. Highest stabilization
occurs when N 15 high, the sidewalls are black, and the
endwalls are non-emitting, that is, when the axial
endwall radiation is low. Increasing the endwall
emissivity destabilizes the fluid. Since Ra,, ., but not
Rua% ., is influenced significantly by «._, it is apparent
that the destabilizing effect of endwall emissivity is due
to the influence of axial endwall radiation in steepen-
ing the base flow temperature gradient in the center of
the slot (see also Table 2).

The combined action of wall conduction and radi-
ation is complex, since in some circumstances the
critical Rayleigh number Ra, . can first decrease upon
increasing H from zero, pass through a minimum, and
then increase with further wall conduction. An ex-
ample of this behavior in Table 3 is the case L/D = 4,
& = 1, ¢, = 0,and N, = 4 with parameter H = 0.03,
0.10, 0.30 and 1.00. In the absence of radiation, wall
conduction always stabilizes the fluid [4, 9]. Hence,
with strong radiation coupling, the destabilizing in-
fluence of increasing wall conduction at low H is due to
axial wall conduction counteracting the axial sidewall
radiative coupling on the base flow vertical tempera-
ture gradient in the fluid core.

Experimental results

Figures 6-8 show typical infinite fringe interfero-
grams recorded with cells 7, 1 and 2, respectively. Each
fringe is the locus of equal optical path length through
the test cell and, hence, are isotherms averaged in the y-
direction. The temperature difference between con-
secutive fringes is 2.3°C at T,.., = 300K. At other
temperatures the AT /fringe goeslike (T/T ,.,,)°. In the
present study accurate results could be obtained with
the infinite fringe technique for AT > 25°C. For lower
AT it was found to be advantageous to use the finite
fringe technique [16], but the interferograms are not
shown here, since the infinite fringe interferograms are
better suited to illustrate the qualitative features of the
temperature field inside the test cells.

In Fig. 6, variations in the temperature field over the
11 cells are indicated. This figure demonstrates that
edge effects influence only the two outermost cells ; the
central cells are free of edge effects.

The interferograms in Fig. 7 depict the isotherms in
cell 1 in which radiation effects are small (¢, = 0.03 and
& = .y = 0.1). In Fig. 7(a) the Rayleigh number is
Just above the critical value as indicated by the nearly
uniform fringe spacing, and the heat transfer is mainly
conductive. At higher Ra,, in Figs. 7(b)—(d), Benard
cellular convection in the form of multiple rolls with
axes in the x-direction, is characterized by fringes
which are widely spaced in the central regions of the
cells where convectional transport dominates and
which are narrowly spaced near the horizontal boun-
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FiG. 6. Interferograms, cell 7 (see Table 1).
daries where conductional transport dominates. Note  negative vertical temperature gradient at # = +0.5,0or

also that the fringes are curved, indicating horizontal
temperature differences, due to sidewall conduction.

Figure 8 shows interferograms for cell 2 which is
identical to cell 1 except that the sidewalls have high
emissivity. In Fig, 8(a) the Rayleigh number is close to
Ra,, . ; the influence of sidewall radiation on the base
flow temperature field is apparent in the curvature and
relatively close spacing of the fringes near the horizon-
tal plates. After instability, Figs. 8(b)—(d), the tempera-
ture fields are qualitatively similar to those in Fig. 7. If
acomparison is made at a particular Rap, e.g. Figs. 7(c)
and 8(c), the suppression of convection due to sidewall
radiative exchange can be seen in the fringe spacing; in
Fig. 7(c) the spacing near the centers of the cells is
somewhat greater than that in Fig. 8(c).

The data reduction for the finite fringe interfero-
grams involved determining the variation of tempera-
ture with 7 at x = 0 and plotting the dimensionless

Nusselt number, vs the Rayleigh number. For the finite
fringe interferograms it was not necessary to obtain 7
vs Z data since the vertical temperature gradients could
be obtained directly from interferograms. Figures
9-11 show Nuvs Ra,,plots for cells 1--7. The solid lines
are curve fits through the data points. The intersection
of two curves, one through low (before stability) and
the other through high (after instability) Ra;, data,
fixes the experimental critical Rayleigh number. These
numbers are tabulated in Table 4. Note that for cell 6,
in which the plates have different emissivities, the
Nusselt numbers evaluated at 7 = +0.5 are not the
same, because the higher radiative flux at the high
emissivity end requires a lower conductive heat flux
and vice versa. The curve intersections indicate
approximately the same value of critical Rayleigh
number, however.

The influence of sidewall emissivity on Ra,, _for L/D
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F1G. 7. Interferograms, cell 1 (see Table 1).

=4,H = 0.76, N, = 1.4, and low endwall emissivity is
seen by comparing the results for cells, 1, 2, and 3 in
Table 4. When ¢, = ¢, = 003, Ra;, . = 98. As the
emissivity of the long sidewall, ¢,, is increased to 0.9 the
critical Rayleigh number is augmented by 29Y%;, and, if
in addition the emissivity of the short sidewall, ¢, is
increased to 0.9, there is a further 8Y; increase in Ra,, .
As theory predicts, there is a slight decrease in Ra,,
when the endwall emissivity is increased (cell 4).

The data for cells 5-7 show that the critical Rayleigh
number for the slot with unequal plate emissivities lies
between the values for slots with two low emissivity
plates or with two high emissivity plates. This result
was also reported by Smart et al. [ 13] for the slot with
low emissivity top and high emissivity bottom plates.

Comparison of numerical and experimental results
The experimental critical Rayleigh numbers are
compared to 3-term Galerkin Ra,, . calculations in
Table 4. Also listed is the percentage difference be-
tween the two values. In all but one case the numerical
analysis slightly underpredicts the critical Rayleigh

number. The worst case of 9%, difference is for cell 3 in
which &, = 0.9, for which the slot analysis has no
provision. Conducting and radiating walls at y =
0.5W/D would be expected to have a stabilizing
influence on Ra,, . as indicated by the experimental
results.

Additional comparisons are made in Table 5 in
which the 5-term Galerkin numerical and experimen-
tal values of the base flow vertical temperature gradient
atz = —0.5,0.0,and 0.5 are listed. The values agree to
within 59 except for one case in which the deviation is
9%.

The numerical critical Rayleigh number calcu-
lations are compared to the experimental data of
Smart et al. [13] in Table 6. In that study the authors
determined Ra,, . from calorimetric Nusselt vs Ray-
leigh number heat transfer data for air-filled, high
horizontal aspect ratio (W/D = 44), multiple-
communicating cells. For set ups 1, 2 and 3 the sidewall
partitions were constructed of polyethylene film which
was significantly transparent to thermal radiation.
However, the authors noted that, because of symmetri-
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Fi1G. 8. Interferograms, cell 2 (see Table 1).

cal convective motions in adjacent cells, the sidewalls
can be treated as having an effective specular re-
flectivity equal to 1 — ¢, The sidewall partitions for set
ups 4, 5 and 6 were radiation-opaque.

For set ups 1, 2 and 3 the experimental and
numerical results differ by no more than 129 even
though the sidewalls are assumed to be diffuse in the
analysis. When the sidewall emissivity is high and

25
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O 4
15
“0 1 i F]
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Ra,

F1G. 9. Nusselt number at x = 0 vs Rayleigh number, cells
1-4.

endwall emissivity is low, the predicted critical Ray-
leigh number agrees well with experiment ; however, if
the endwall emissivities are high the present Galerkin
solutions overpredict Ra, , by 17%.

6. SUMMARY

The main results of the study are as follows:
(1) Sidewall and endwall radiation in the finite slot

30 5

20

10 J A
40 60 80 160 120

F1G. 10. Nusselt number at x = (vs Rayleigh number, cells 5

and 7.
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FiG. 11. Nusselt number at x = 0vs Rayleigh number, cell 6.

enclosure affects the critical Rayleigh number by
essentially two separate mechanisms:

(a) Axial radiation influences the base flow tempera-
ture distribution in the fluid before instability.

{(b) Transverse thermal perturbations in the fluid are
damped by radiative exchange between sidewall ele-
ments adjacent to the perturbed hot and cold fluid
regions. High sidewall emissivity is stabilizing in both

D. W. HarrieLp and D. K. Epwarns

these mechanisms while high endwall emissivity acts to
destabilize in the first mechanism.

(2} Sidewall radiant exchange in the finite slot
stabilizes the fluid, and, in the absence of radiation
effects, wall conduction stabilizes the fluid as well.
However, when both radiation and wall conduction
effects are important it is possible for wall conduction
to be destabilizing at low values of the wall conduction
parameter. This behavior is due to the opposing
tendencies of sidewall radiation and conduction on the
base flow temperature field.

(3) The numerical predictions agree with present
and previous experimental data to within 12%; except
for one data point.
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APPENDIX

THE PRINCIPLE OF EXCHANGE OF INSTABILITIES

Sherman and Ostrach [19] derived a proof of the principle
of exchange of instabilities for a completely confined fluid
with conducting sidewalls. For the present situation being
analyzed the analogs to their equations (20a) and (20b) are

Re(n}(Rapls — Prot 1)+ I, + Rapl, — Protlg =0
27

(28)

where n is a complex number in the time dependency factor
e". The volume integrals are

Im(n}{Rapls + Pr~'1,} =0

I, = f u* - V2udV,
y

L
I = Bf [vo V@* + u* Vi, — 9V ¢ *JaV,
v

=5 gerav,
pl,

I, = J u - u*dl,
v

”

I = J u* - (V -uv,)dV
v

where the asterisk denotes the solution corresponding to the
complex conjugate of n, n*.

If the Rayleigh number is positive, i.e. the fluid is heated
from below, equation (28) implies that the imaginary part of
n is zero since integrals I; and I, are positive. Depending on
the characteristics of the base flow, v, and 8, a positive Ra,,
may or may not satisfy equation (27). If it does, the critical
disturbance is stationary at marginal stability.

EFFET DU RAYONNEMENT A LA PAROI ET DE LA CONDUCTION SUR LA STABILITE
D’UN FLUIDE DANS UNE FENTE FINIE CHAUFFEE PAR LE BAS

Résumé—On détermine le nombre de Rayleigh critique pour un fluide limité par des parois paralléles

verticales de hauteur finie. Le fluide dilatable, radiant et diathermane est chauff¢ par le bas et refroidi en haut,

sur les extrémités rigides qui ont des émissivités égales mais quelconques. Les parois verticales sont minces et

conductrices, elles ont des émissivités uniformes et arbitraires et elles sont adiabatiques a 'extérieur. Les effets

du rapport de forme, de la conductance de paroi, des émissivités sur le nombre de Rayleigh critique sont

déterminés analytiquement par la technique de Galerkine et sont expérimentalement confirmés par
interférométrie holographique.

HMT 25:9 « H
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DIE EINFLUSSE VON STRAHLUNG UND LEITUNG DER WAND AUF DIE STABILITAT
EINES FLUIDS IN EINEM ENDLICHEN SPALT BEI BEHEIZUNG VON UNTEN

Zusammenfassung—Es wurde eine kritische Rayleigh-Zahl fiir ein Fluid ermittelt, welches durch senkrechie,
parallele Winde von endlicher Hohe begrenzt wird. Das thermisch ausdehnungsfihige,
warmestrahlungsdurchiassige Fluid wird durch AbschluBwinde von unten beheizt und von oben gekiihlt.
Die AbschluBwinde haben eine bestimmte gleiche Emissivitit. Die vertikalen Winde sind diinn und leitend,
haben eine bestimmte gleichmaBige Emissivitat und sind an den 4uBeren Oberflidchen adiabat. Die Einflisse
von Seitenverhdltnis, Warmeleitung der Wand und Emissivitdten an den Seiten- und AbschiuBwinden auf
die kritische Rayleigh-Zahi werden analytisch nach der Galerkin-Methode bestimmt und experimentell
durch holografische Interferometrie bestitigt.

BJIMAHWUE WU3JYUYEHHUS U TEMJOIMPOBOJHOCTHU CTEHKU HA YCTOHUUYUBOCTDb
YXHUJKOCTU B HATPEBAEMOW CHH3Y HIEJM KOHEUHBIX PAZMEPOB

Aunnotammsi—IloyueHO 3HAUEHHE KPUTHYECKOIo 4Mcia Pejes aAns KUAKOCTH, HaxoAsWIEHCS Mexay
BEPTHKA/IbHbIMH TaPaljIebHbIMH CTEHKAMH KOHEYHOH BLICOTHI. PacluMpsiouascs npu HarpeBaHUM,
NponycKaas M3JyyeHHe XHIKOCTb MOMOTPEBAETCAs CHU3Y M OXJIaXIAETCs CBEPXY 4epe3 TBepble
rpandlibl. OHM HMEIOT TNPOM3BOJIbHYIO. HO DpaBHYIO H3J1ydaTelbHyl crnocobHocth. ToHkue #
TEMJONPOBOAHBIE BEPTHKATbHbIE CTEHKH HMEIOT NPOH3BO.ILHYIO OJHOPOAHYH H3JIYHATE/NbHYHO
CrocOBGHOCTb M ¢ BHEUIHeH CTOPOHBI Tenjaou30aupoBaHbl. MeTonom [NanepkuHa onpeneseHo BIHsHUE
reOMEeTPHYECKOr0 MapaMeTpd, MNPOBOAMMOCTH OOKOBbIX CTEHOK W H3JIy4aTebHbIX CIIOCODHOCTEM
OOKOBBIX CTEHOK M TODLEBBIX MOBEPXHOCTEN Ha KpHTH4eckoe 4ucio Penes. Pesynbratel pacueToB
MOATBEPX ACHbl IKCIEPHMEHTAJILHO ¢ NOMOLLbIO ro10rpaduieckoi HHTEphHEepOMETPHH.



